Monday, December 7, 2009

1-way ANOVA


proc import datafile="F:\publish\data analysis using R\data\plantgrowth.csv" out=plantgrowth dbms=csv replace;
run;

proc sql;
select group, mean(weight), var(weight)
from plantgrowth
group by group;
quit;

proc glm data=plantgrowth;
class group;
model weight = group;
run; quit;

proc mixed data=plantgrowth;
class group;
model weight = group;
run;

proc mixed data=plantgrowth;
class group;
model weight = group / ddfm=Satterthwaite;
repeated / group=group;
run;

paired t-test


proc import datafile="F:\publish\data analysis using R\data\CBT.csv" out=cbt dbms=csv replace;
run;

proc sql;
select t(diff) as t, prt(diff) as pvalue
from cbt
;quit;

proc sql;
create table cbt_long as
select monotonic() as id, 1 as period, prewt as weight from cbt union
select monotonic() as id, 2 as period, postwt as weigt from cbt
;quit;

proc mixed data=cbt_long;
class id period;
model weight = period;
random id;
run;

independent t-test


proc import datafile="F:\publish\data analysis using R\data\indept_ttest.csv" out=dental dbms=csv replace;
run;

proc ttest data=dental;
class treatment;
var resp;
run;

proc mixed data=dental;
class treatment;
model resp=treatment;
run;

proc mixed data=dental;
class treatment;
model resp=treatment / ddfm=Satterthwaite;
repeated / group=treatment;
run;

/* ML: df is not right */
proc nlmixed data=dental;
parms mu=100, tau=10, s2e=2;
if (treatment=1) then eta=mu;
else eta=mu+tau;
model resp ~ normal(eta, s2e);
run;


Yij = mu + bi + error


proc import datafile="F:\publish\data analysis using R\data\rail.csv" out=rail dbms=csv replace;
run;

proc mixed data=rail;
class rail;
model travel= / s;
random rail;
run;

proc mixed data=rail method=ml;
class rail;
model travel= / s;
random rail;
run;

* GEE;
proc genmod data=rail;
class rail;
model travel = ;
repeated subject = Rail / type=cs;
run;

proc nlmixed data=rail;
parms mu=100, s2b=10, s2e=10;
model travel ~ normal(mu+bi, s2e);
random bi ~ normal(0, s2b) subject=rail;
run;

y = a + b*x + error


proc import datafile="F:\publish\data analysis using R\data\cars.csv" out=cars dbms=csv replace;
run;

proc mixed data=cars;
model dist = speed / s;
run;

proc mixed data=cars method=ml;
model dist = speed / s;
run;

proc genmod data=cars;
model dist = speed;
run;

proc glimmix data=cars;
model dist = speed / s;
run;

proc nlmixed data=cars;
parms alpha=10 beta=10 s2e=100;
model dist ~ normal(alpha+beta*speed, s2e);
run;

y = mu + e


data test;
input y @@;
datalines;
59.9 91.8 82.4 59.1 82.9 70.6 77.2 69.5 78.5 85.6
run;

proc sql;
select mean(y) as mean, css(y)/count(y) as MLE, css(y)/(count(y)-1) as REMLE
from test
;quit;

proc mixed data=test;
model y= / s;
run;

proc mixed data=test method=ml;
model y= / s;
run;

proc genmod data=test;
model y=;
run;

/* REML: default */
proc glimmix data=test method=rspl;
model y= / s;
run;

/* ML */
proc glimmix data=test method=mspl;
model y= / s;
run;

proc nlmixed data=test;
parms mu=100 s2e=100;
model y~normal(mu,s2e);
run;